

MORE FLEXIBLE AND EXQUISITE

Precise Laser Cutting Machine--i5

Precise Laser Cutting Machine--i5

The equipment meets the parts processing requirements of most industries, working accuracy is stable. Selecting the optimal force and supporting structure, the overall mechanical property of equipment is perfect. Adopting cutting-edge optical concept to improve cutting performance. High speed cutting, auxiliary loading and unloading and efficient production reduce labor costs. At present, laser cutting machines have been widely used in electronics, electrical, mechanical hardware, new energy lithium, packaging, solar, LED, automotive and other industries.

Product parameters

Model

Working area 900*1300mm

laser power 4000w/3000w/2000w/1500w/1000w

X/Y-axis positioning accuracy

X/Y-axis repositioning accuracy

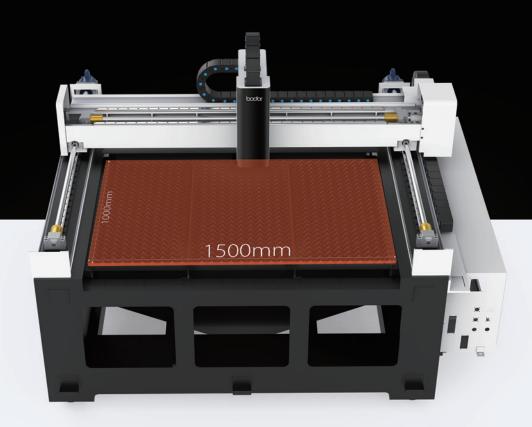
Max. linkage speed

0.03mm

60m/min

FULL PROTECTION OF BLACK ACRYLIC

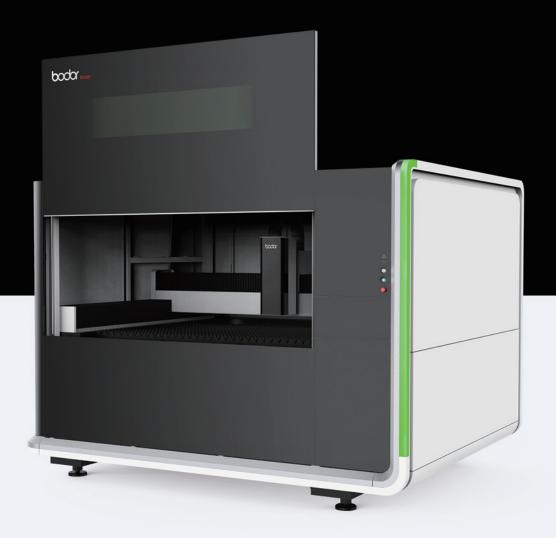
SEALED WORKING SPACE


Precise Laser Cutting Machine--i5

21.5 inch HD touch screen enhances interaction experience.

Full enclosed protection of black acrylic and isolated work area completely isolate smoke and laser radiation. Minimized pollution will make a safer using condition.

More Flexible And Exquisite



Precise Laser Cutting Machine--i5

Space structure is effectively used, cutting area is 100x1500mm, saving space and resources, the equipment can be moved flexibly.

Electric vertical lifting door


Precise Laser Cutting Machine--i5

The electric vertical lifting door greatly reduces floor area and improve space utilization efficiently. One-button automatic door opening reduces manual operation and it's better to ensure the safety.

A CAST IRON BED LASTS FOREVER.

No deformation in a life cycle

Clone

Mold pouring, clone production; integrally formed, reject splicing

Durable

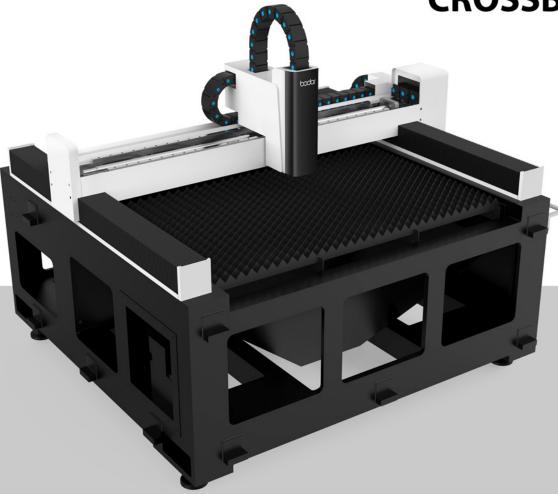
Using flake graphite cast iron, the lowest tensile strength of which is 200MPa. High carbon content, high compressive strength and high hardness. Strong shock absorption and wear resistance. Low thermal sensitivity and bed gap sensitivity reduce the loss of equipment in using, so the machine accuracy could maintain for a long time, and no deformation in a life cycle.

For more information, please go to the website: www.bodor.com

Wireless remote control equipment

Mobile phone size can meet one-handed operation

Elegant curves fit the hand palm well


Magnetic design can be adsorbed on the machine bed at any time, available at all times

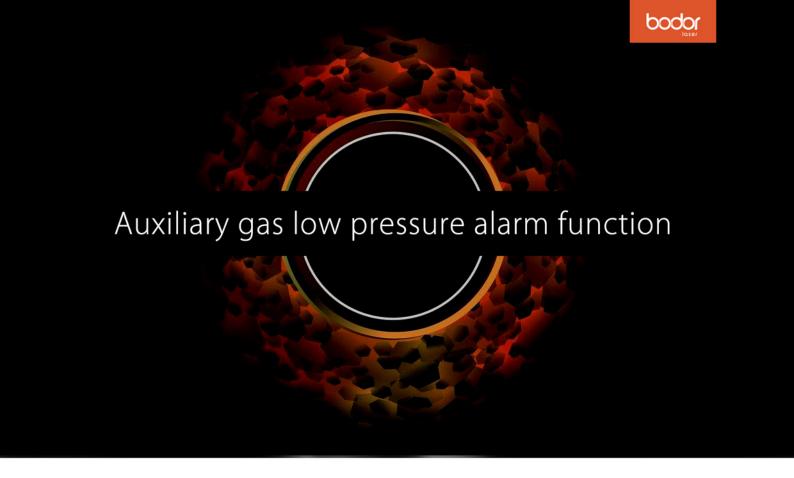
Mango shape is lively and vivid

Cast aluminum crossbeam

Integral steel mold pressure casting, light, flexible and efficient

After artificial aging, solution treatment and finishing, crossbeam owns good integrity, rigidity, surface quality, toughness and ductility. Aluminum alloy's metal characteristics of light weight and strong rigidity are helpful to high speed movement in processing, and high flexibility is beneficial to high-speed cutting of various graphics based on high accuracy. Light crossbeam can give equipment a high operation speed, improving processing efficiency to ensure processing quality.

Adhering to "simple, acme, fast" of BODOR laser, the interface of BodorPro2.0 is more affinity, closer to user, and paying more attention to user experience.


Optimizing functions and algorithms makes system more stable and efficient! Dual-camera monitoring gathers processing interface and monitor interface at one.

One software with two configurations, plane cutting and tubing cutting can switch freely.

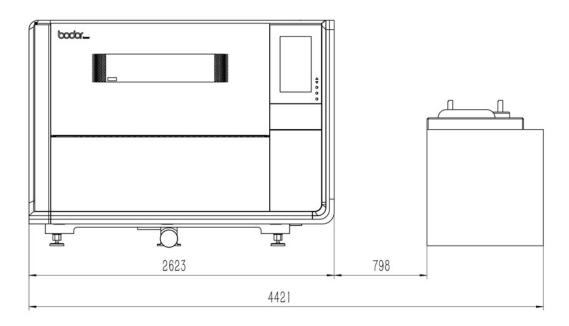
BodorPro2.0 optimized equipment, integrated compatibility and equipment perfectly, and made the system more stable, smooth and efficient.

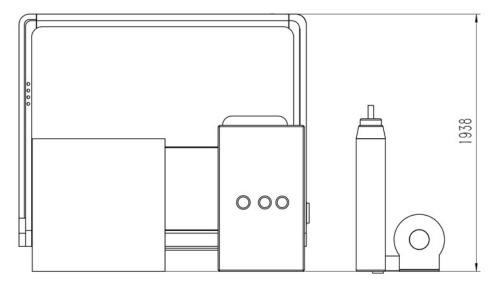
It adopted the basic architecture of windows platform and fully inherited operating habits of office, reducing the operator's threshold.

Registration through mobile phone is convenient, fast and safer.

Auxiliary gas low pressure alarm function

Providing real-time pressure detection, pushing abnormal information when pressure value is lower than optimal cutting effect and precision. Ensure the cutting performance, accuracy and timeliness of gas replacement.

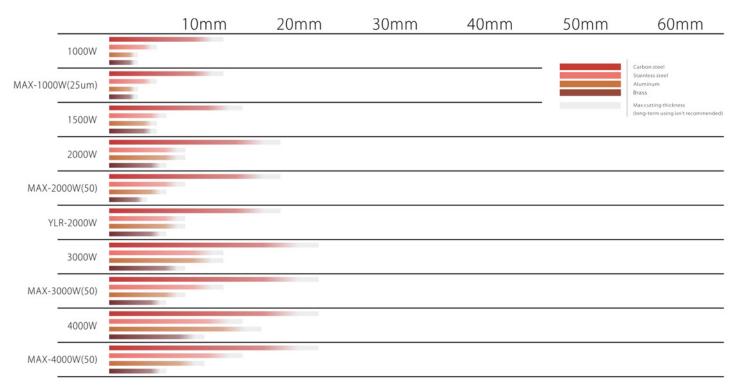



Appearance design

Elegant curves and compact design make the operation easier.

Meeting the CE, FDA certification standards, fully enclosed design and powerful exhaust system achieve zero pollution to the environment, making processing more clear. Laser protective glasses make sure there is no harm to human eye; striking bar-type warning system reminds machining status of the machine at any time, the operation is safer and more efficient.

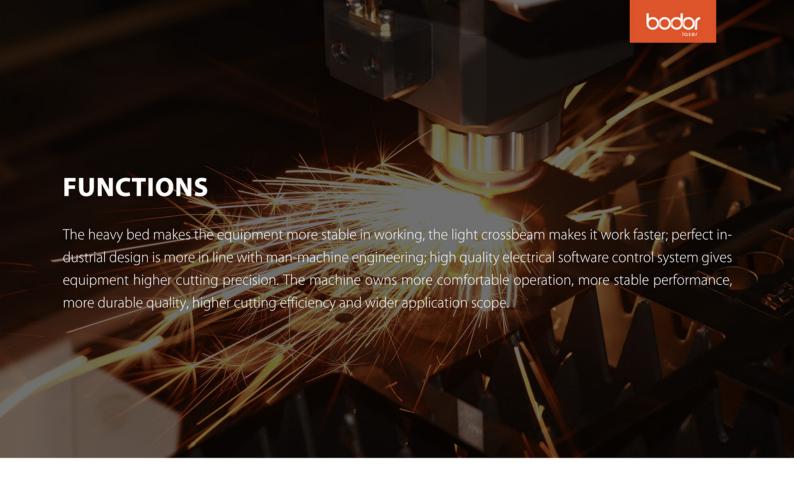
i5 • FLOOR PLAN



PLACING REQUIREMENT

- 1. The whole machine should keep away from obstacles at least 1 m.
- 2. The whole machine should be far away from the hypocenter.
- 3. The planeness of placing field should be less than 5 mm.
- 4. Voltage fluctuation of the whole machine should be kept in ± 5% .

Cutting Capacity



Above data is only for reference

Fiber Laser Cutting Process Parameters

Material			1000W(25um)	1500W	2000W	MAX- 2000W(50)	YLR-2000W	3000W	MAX- 3000W(50)	4000W	MAX - 4000W(50)	IPG6000W	MAX-6000W	8000W	10000W	12000W	15000W
	Thickness	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed m/min	speed mymin	speed m/min	speed mylmin				
	1	8.0 10	8.010	8.010	8.010	8.010	8.010	8.010	8.010								
	2	4065	457.0	4565	4765	4765	4765	4875	4875								
	3	24-30	24-30	2640 2530	3.048 2.83.5	3.048 2835	3.048 2835	3350	3350 3042								
	5	1520	1520	2025	2230	223.0	2230	2635	2635								
	6	1416	14-16	1622	1826	1826	1826	2332	2332								
Carbon steel	8	0812	0.81.2	1014	1218	1218	1218	1826	1826								
(Q235A) O2	12	0508	0508	0.71.0	09-12	09-12	09-12	1016	1016								
	14			0.50.7	0.70.8	0709	0.810	0912	0912								
	16				06-07	0608	06-08	0.71.0	0.71.0								
	18				0.40.6	0.50.7	0507	0608	0.60.8								
	22							0307	0307								
	25																
	30																
	1	1825	2436	2027	2430	24 - 50	24 - 50	3035	3058								
	3	575 1825	610	8012 3050	9012	9014	9.015	1321	1339								
	4	1213	1216	1524	3.042	3245	3245	4060	407.0								
	5	0607	06075	0.71.3	18-25	20-28	20-28	3050	3.05.0								
	6			0.710	12-18	12-20	12-20	2040	2040								
	8				0.7- 1.0	0.7-10	0.7- 1.0	1520	1520								
	12							0.4-0.6	04-06								
Stainless steel (201)	14																
N2	16																
	18																
	20 25												No si	inn	ort		
	30											1.	10 20	1hh	OIL		
	35																
	40																
	45 50																
	60																
	1	6.010	6.010	1020	1525	1525	2030	2538	2540								
	2	2836	2836	507.0	7 10	7 10	1015	1018	1320								
	3	0.715	0.715	2040	4060	4060 3540	5.07.0 3.55.0	658.0 3.55.0	6580 3550								
	5			0710	1218	1218	1825	2535	2535								
	6				0.71.0	1015	1015	1525	1525								
	8				0.60.8		0.60.8	0.71.0	0.71.0								
Aluminum	10							0.40.7									
N2	16							03-045									
	20																
	z																
	30																
	35 40																
	50																
	60																
	1	6010	6.010	8013	1016	1016	1218	2035	2035								
	3	2836	2836	3045 1525	4575 2540	5.06.0 2.54.0	6085	6010 4060	6010 4060								
	4			1016	1520	2030	2030	30-50	30-50								
	5			050.7	09-12		0.912	1520	1520								
	6				0.40.7		0.409	1018	1018								
Brass N2	8							0.50.7									
	12																
	14																
	16																
	18																
	20																

More convenient for connecting electricity

Single-phase power supply can ensure the normal operation of equipment. This function makes machine connecting the power more convenient, and the machine could work in various places.

A new generation of safety following module

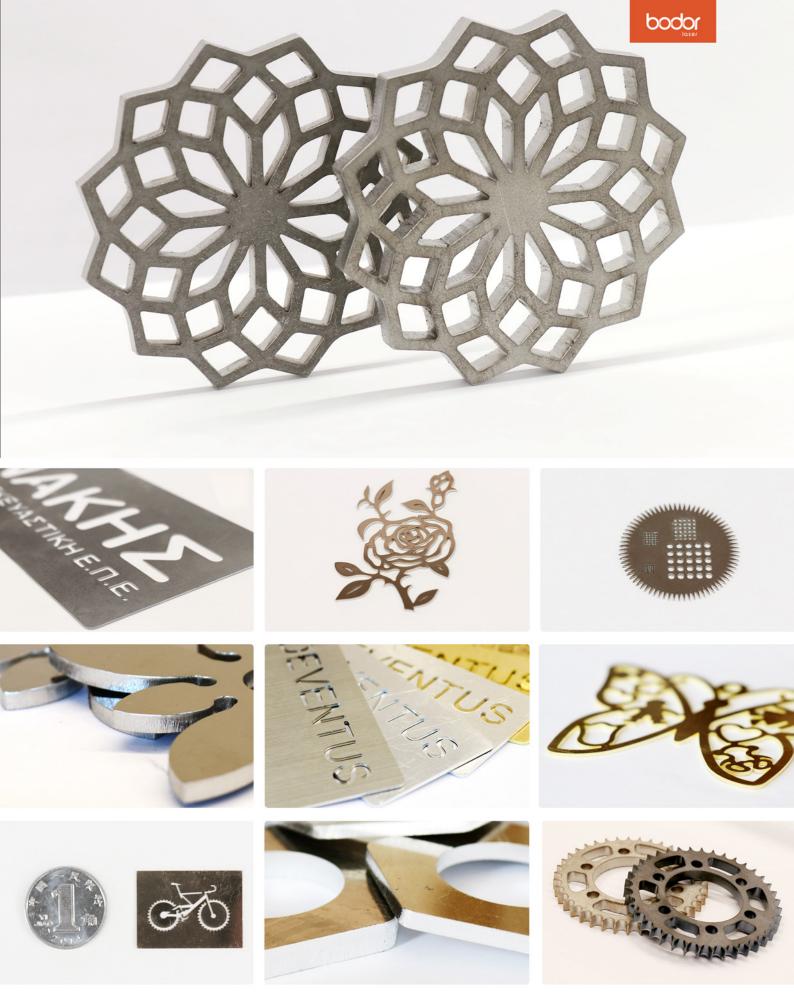
Laser head keeping distance with work piece in cutting process can reduce collision risks. It will stop cutting when colliding plate. The safety following module reduces accident rate and improves cutting performance.

Intelligent travel protection

Automatically monitor operation range of crossbeam and cutting parts, keeping operation within machining range. Double guarantees of fixed limitation greatly improve equipment and personal safety, minimizing the using risks.

Automatic lubrication system

Automatic lubrication system provides timing and ration lubricating oil for equipment to ensure its normal and high speed operation, and owns functions of abnormal alarm and liquid level alarm. The system greatly enhances cutting accuracy and effectively extends service life of transmission mechanism.



The advantages of laser cutting compared with traditional cutting methods

- 1. High precision: Focusing accuracy is 0.05mm, repetition focusing accuracy is 0.02 mm
- 2. Narrow kerf: The laser beam is focused into a small spot, making the focus reach high power density, the material is quickly heated up to the gasification then evaporates to form holes. With the relative linear movement of the light beam to the material, the hole is continuously formed narrow gaps. Kerf width of the incision is usually $0.10 \sim 0.20$ mm.
- 3. Smooth section: Cutting surface without burrs, roughness of incision surface is generally controlled within Ra12.5.
- 4. Good cutting quality: Non contact cutting, cutting edge is less affected by heat, basically no thermal deformation of work piece, completely avoid down edge formed by material punching, in general, slit doesn't need secondary processing.
- 5. No damage to work piece: Laser cutting head won't contact surface of material to ensure no scratches to work piece.

Advantages compared with other cutting methods

- 1. Wire cutting: High precision, difficult to perforate, low cutting speed. Low investment in equipment. The price range of a device is from tens of thousands to hundreds of thousands or so.
- 2. Laser cutting: High precision, cutting speed is influenced by plate thickness which is generally within $10 \, \text{m}$ / min. Not suitable for thick plate (only for $0 \sim 25 \, \text{mm}$ plate), high investment in equipment is suitable for large batch processing.
- 3. Water jet cutting: High precision, low cutting speed. It is not suitable for large batch processing, and equipment investment is high.
- 4. Plasma cutting: High precision(The verticality of the product is not high), fast speed and consumption. Suitable for large batch processing, and equipment investment belongs to medium level.
- 5. Flame (oxygen) cutting: Accuracy(thermal deformation), low speed, suitable for large batch processing. Equipment investment is small and operation cost is cheap.
- 6. Punch: Difficult for processing various small-batch materials, suitable for few large batch processing. It is difficult to cut the thick plate. Equipment investment belongs to medium level.
- 7. Plate shearing machine: Not suitable for curvilinear cutting, straight line cutting is OK, difficult for thick plate cutting.

Metal Samples

OFFICE

WORKSHOP